Flow-induced deformation of shallow microfluidic channels.
نویسندگان
چکیده
We study the elastic deformation of poly(dimethylsiloxane) (PDMS) microchannels under imposed flow rates and the effect of this deformation on the laminar flow profile and pressure distribution within the channels. Deformation is demonstrated to be an important consideration in low aspect ratio (height to width) channels and the effect becomes increasingly pronounced for very shallow channels. Bulging channels are imaged under varying flow conditions by confocal microscopy. The deformation is related to the pressure and is thus non-uniform throughout the channel, with tapering occurring along the stream-wise axis. The measured pressure drop is monitored as a function of the imposed flow rate. For a given pressure drop, the corresponding flow rate in a deforming channel is found to be several times higher than expected in a non-deforming channel. The experimental results are supported by scaling analysis and computational fluid dynamics simulations coupled to materials deformation models.
منابع مشابه
The Deformation of Polydimethylsiloxane (PDMS) Microfluidic Channels Filled with Embedded Circular Obstacles under Certain Circumstances.
Experimental investigations were conducted to determine the influence of polydimethylsiloxane (PDMS) microfluidic channels containing aligned circular obstacles (with diameters of 172 µm and 132 µm) on the flow velocity and pressure drop under steady-state flow conditions. A significant PDMS bulging was observed when the fluid flow initially contacted the obstacles, but this phenomenon decrease...
متن کاملDeformation of a single mouse oocyte in a constricted microfluidic channel.
Single oocyte manipulation in microfluidic channels via precisely controlled flow is critical in microfluidic-based in vitro fertilization. Such systems can potentially minimize the number of transfer steps among containers for rinsing as often performed during conventional in vitro fertilization and can standardize protocols by minimizing manual handling steps. To study shape deformation of oo...
متن کاملWaste water ammonia stripping intensification using microfluidic system
This paper reports the results of experimentally removing ammonia from synthetically prepared ammonia solution using a micro scale mixing loop air stripper. Effects of various operational parameters (such as: pH, air flow rate, wastewater flow rate and initial ammonia concentration) were evaluated. By increasing the pH from 10 to 12.25 the amount of KLa increased from 0.26 to 0.73 hr-1. A consi...
متن کاملThe improved resistance of PDMS to pressure-induced deformation and chemical solvent swelling for microfluidic devices
We present a fabrication technique that increases the resistance of PDMS to deformation under pressure driven flow and chemical solvents swelling without the use of any foreign materials. This is achieved by enhancing the material properties of PDMS by coupling two previously isolated processes. First, the weight ratio of the prepolymer to the curing agent was increased from 10:1 to 5:1, with t...
متن کاملControl of initiation, rate, and routing of spontaneous capillary-driven flow of liquid droplets through microfluidic channels on SlipChip.
This Article describes the use of capillary pressure to initiate and control the rate of spontaneous liquid-liquid flow through microfluidic channels. In contrast to flow driven by external pressure, flow driven by capillary pressure is dominated by interfacial phenomena and is exquisitely sensitive to the chemical composition and geometry of the fluids and channels. A stepwise change in capill...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 6 4 شماره
صفحات -
تاریخ انتشار 2006